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Abstract— We compare common, fixed population size evo-
lutionary strategies with a strategy incorporating a growing
population size and intermittent selection events. In the latter
strategy, the population size grows geometrically and selection
free every generation. After a fixed number of generations, a
selection event occurs which kills many of the individuals in the
population and reduces the population size back to an initial
value. The quality of solutions and speed of this algorithm are
compared using four real-valued problem domains, to common
evolutionary strategy algorithms based on(µ, λ) and (µ + λ),
with promising results.

I. I NTRODUCTION

Two common evolutionary (CE) algorithms are compared
against an algorithm based on a different method of selection
– the selection event (SE). In the SE algorithm the popu-
lation size is not constant, but grows geometrically every
generation until the selection event occurs, at which time
the population size contracts. The biological inspirationfor
this algorithm is that of the epidemic – exemplified by the
effect of pesticides on insect populations. The typical crop-
destroying insect has a short life-span, and consequently
a population goes through many generations in a single
season. Additionally, such insects are reproductively prolific,
leading to a significantly expanded population over several
generations.

In many evolutionary strategies, the population size is
constant throughout the simulation. Some algorithms, such
as Restart CMA [1], will adjust the population size on a
run-by-run basis. In the “sustained population dynamics”
simulation [2] and other similar simulations, there is no
control over the population size at all; instead, time and
space are simulated in a 2- or 3-dimensional environment,
and when individuals interact with each other they may fight
or reproduce, etc. In [3], Schwefelet al note that a Darwinian
natural selection process resulting in a “normal surplus of
births over deaths . . . is neither reflected in GAs nor in EP”.
With the selection event algorithm, we begin to apply this
natural phenomenon to computational optimization.

In §II we describe the different algorithms investigated
in this paper. In§III we give a brief description of the
different environments used to evaluate the performance of
the algorithms. In§IV we provide and discuss the simulation
results.
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II. A LGORITHM DESCRIPTION

A. Commonalities between all algorithms

1) Gene type, parameters, and operations:All of the
algorithms used in this paper use a real-valued gene similarto
that described in D.B. Fogel’s work on evolving a checkers
player [4]. This gene consists of a real-valuevalue, used
as one of the values ofx, the input vector to the fitness
function; a real-valueσ, specifying the standard deviation of
a normally-distributed random variable used to mutatevalue;
and a real-valueτ , used in the mutation ofσ. The gene
supports only the mutation operation. During mutation,σ is
mutated first, then this newσ is used to mutatevalue. Lastly,
all individuals have a genome consisting ofd genes, where
d represents the dimensionality of the optimization problem.

2) Initial value generation:The initial values ofvalue,
σ, andτ are calculated as shown in (1).

σ0 =

(

κcoverage(βupper − βlower)
d

λ0

)1/d

τ = κτσ0

value = σ0N(0, 1) ∈ [βlower, βupper ] (1)

whereκcoverage is the coefficient of coverage, a scale factor
which for all simulations in this paper has a value of 10.0;
κτ is a scale factor to getτ from the same calculation as
σ0, in all simulations this value is 0.05;βlower and βupper

are the lower- and upper-bounds for the particular problem
environment;d is the number of dimensions for the problem
environment; andN(0, 1) is an independent sampling of a
standard Gaussian distributed random variable.

3) Tournament selection:In these algorithms, tournament
selection is used whenever some individuals need to be
chosen in a non-deterministic manner. Tournaments are used
because of their simplicity in implementation and generality
with respect to problem environments [5, Ch.22 and Ch.24].

B. CEα algorithm description

This algorithm is based on the well-known(µ, λ) ES [5,
Ch.9]. The algorithm is modified to include the use of
a tournament selection operator. Parents are selected from
the current generation,P (t), by being randomly chosen
to participate in a pair-wise (or binary) tournament with
replacement. The individual that is the more-fit of the two
becomes a parent, and both individuals are again eligible to
be chosen randomly for another pair-wise tournament. The
selected parent is then mutated, and the offspring placed into
the next generation. This is done repeatedly until all members
of the population of the next generation,P (t+1), have been
generated.



C. CEβ algorithm description

This algorithm is the one used in D.B. Fogel’s work evolv-
ing a checkers player [4], and is based on the(µ+λ) ES [5,
Ch.9]. In this strategy,P (t+1) consists of the best half of the
individuals in P (t), unmodified. Each of these individuals
also produces a child that is created through mutation of all
genes.

D. Selection Event (SE) algorithm description

There are two phases in this evolutionary algorithm: the
expand phase and the collapse phase. In the expand phase,
which occurs every generation, the population grows. During
the collapse phase, which occurs everyTse

1 generations, a
“tournament-to-the-death” is used to reduce the population
size back to the initial value,|P |

(0). In the tournament-to-
the-death, the less-fit of two randomly chosen individuals
is deleted, and the more-fit individual is put back into the
population, and may again participate in another tournament-
to-the-death.

The outline below is a step-by-step summary of the
algorithm.

1) At time t, start with an initial population of|P |(t)

individuals.
2) Expand Phase

a) Each individual inP (t) is mutatedFα times2,
with the resulting offspring placed into the next
generation. Note that the parents are not placed
into the next generation3.

b) Repeat the above stepTse times. When done re-
peating, you will have|P |

(t+Tse)
= Fα

Tse |P |
(t).

3) Collapse Phase
a) Perform pair-wise tournament-to-the-death to de-

termine which individual is deleted from genera-
tion t + Tse. The more-fit of the two individuals
is returned to the population.

b) The above step is repeated(Fα
Tse − 1)|P |

(t)

times, which returns the population size to|P |
(t).

4) Steps 2-3 describe how the algorithm works for gener-
ationst throught + Tse. These steps are repeated for
subsequent generations.

As an example, consider the following parameters: asexual
reproduction rateFα = 3.0, initial population size|P |

(0)
=

30, selection event periodTse = 3. With these, the population
size|P | changes as seen in Table II. As can be seen from this
example,|P | temporarily expands to 810 in generation three,
and then collapses back to 30 in the same generation. This
paradigm also allows forTse = 1, where |P | temporarily
expands and then collapses within every generation.

1Two new parameters are used in this algorithm, and are described in
Table I.

2For the situations whereFα is not a whole number, all individuals
produce the whole part ofFα children, and a pair-wise tournament
selection with replacement strategy is used to produce the remainder of
the individuals.

3There is no reason this need be the case. Indeed, the authors have
done some simulations where parents were placed into the next generation.
However, for the scope of this paper, the statement holds.

TABLE I

NEW PARAMETERS INTRODUCED BY THE SELECTION EVENT

ALGORITHM .

Name Type Description
|P |(0) Integer The initial population size.
Tse Integer The periodicity of the selection event.

TABLE II

EXAMPLE SHOWING HOW THE POPULATION SIZE CHANGES FOR THESE

ALGORITHM .

Generation 0 1 2 3 4 5 ...
|P | 30 90 270 810→30 90 270 ...

Phase E E E E→C E E ...

III. PROBLEM ENVIRONMENTS

Several different real-valued problem environments were
used to evaluate algorithm performance, where performance
is meant in two different ways: as optimality of solution, and
as the number of function evaluations performed during the
search.

All problem environments were taken from [6], though
with a different purpose than outlined in that reference. Here,
the environments are used to provide a cursory examination
of the performance of the newSE algorithm in four different
landscapes. All functions have a single global optima, which
the algorithms are attempting to find. Since we are only
interested in the relative performance of theSE and CE

algorithms, the value of this optima is of no concern. The
problems are briefly illustrated and described in Figure 1.

IV. RESULTS

For the selection event algorithm, simulations were run
with several different parameter settings to obtain a broader
view of its performance. A nomenclature was developed to
distinguish these parameter sets on the graphs:

[Tse]SE[|P |
(0)

], [Fα]

where the values within the[ ]’s denote the parameters that
were varied. For all of the parameter sets evaluated, the pop-
ulation grew from 30 individuals to around 810 individuals,
though at different growth rates. In order to compare all
three algorithms, theCE algorithms had a population size
of 810 individuals. For each of the environments, 12 runs
were performed using random seeds for each run.

Figure 2 contains four graphs – one for each problem
environment. Within a graph, each data-point represents
one run from one of the eleven algorithm variations. All
runs were ended after the same predetermined number of
generations, which for all simulations was 6000 generations.
Figure 2 illustrates both how consistently a particular algo-
rithm concluded its search, and is useful when comparing the
quality of solutions achieved by the algorithms. From these
plots, we see that theSE algorithms outperform theCE

algorithms with respect to the optimality of solution criteria,
in all four environments.
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Fig. 1. Lower-dimension plots of test problem environments. 1(a) illustrates a simple unimodal function of 100 dimensions. 1(b) illustrates a multi-modal
function of 50 dimensions. 1(c) illustrates a multi-modal function of 50 dimensions. 1(d) illustrates a multi-modal function of 50 dimensions, made by
combining the Rastrigin, Weierstrass, Griewank, Ackley, and Sphere functions.
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Fig. 2. Simulation results for the four problem environments. Each data-point represents the population’s average fitness at the end of one simulation run.

We also plot the population’s average fitness against the
number of individuals evaluated4, as seen in Figure 3 and
Figure 5. These plots show how the average fitness changes
as the simulation progresses. Of critical importance to note

4The number of individuals evaluated is proportional to the number of
function evaluations performed, with the constant of proportionality varying
by environment.

from these figures is that in order to have an equal number
of individuals evaluated by each algorithm, the number of
generations had to be made unequal. Recall from§II-B that
CEα creates (and hence evaluates) 810 individuals every
generation, and from§II-C that CEβ creates 810 individuals
initially and 405 individuals each subsequent generation.
This means that in order to evaluate the same number of
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Fig. 3. Simulation results for the Rotated Shifted Sphere and Shifted Rastrigin problem environments. These plots showthe population average fitness
against the number of individuals evaluated. The plots include error bars for the population’s average fitness value, showing the best-average, the average-
average, and worst-average of the 12 simulation runs.

individuals, theCEβ algorithm has to run for twice as many
generations. Similarly for theSE algorithms, the growth rate
Fα and selection event periodicityTse determine how many
individuals are created and evaluated. From these plots we
see that (1) theCEβ algorithm has the fastest algorithmic
speed, though it also tends to prematurely converge, and that
(2) the growth rate parameters forSE have a small effect
on the speed of solution5.

Note that in theSE plots, the population’s average fitness
“bounces” – see Figure 4 for a close-up view of the data.

5Though only the fastest and slowest growth rates simulated are shown
in these figures, the intermediate growth rates do not show significantly
different results.
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Fig. 5. Simulation results for the Schwefel 2.13 and Hybrid problem environments. These plots show the population average fitness against the number of
individuals evaluated. The plots include error bars for thepopulation’s average fitness value, showing the best-average, average-average, and worst-average
of the 12 simulation runs.

This is a result of the expand and collapse cycles: as the
population expands, the average fitness slowly increases6

since most of the mutations have a negative effect on fitness,
at least initially and before subsequent mutations having a
positive effect on fitness can be realized; when the population
collapses, many of the less-fit individuals die, causing the
average fitness to decrease.

Figure 6 is a reproduction of the earlier Figure 2, showing
the simulation results for the simulations where an equal
number of individuals were evaluated. Within a graph,
each data-point represents one run from one of the eleven
algorithm variations. All runs were ended after the same

6Recall that these are all minimization problems

predetermined number of individuals (for these simulations,
almost five million individuals). From these plots, we see
both further evidence that theSE algorithms provide more
optimal solutions than theCE algorithms on these problems,
and that the growth rate parameters do not greatly effect the
optimality of solution found.

V. CONCLUSION, DISCUSSION, AND FUTURE WORK

This paper has introduced a new algorithm, which simu-
lation results have shown performs well in a wide range of
problem environments when compared to two well-known
algorithms. However, much remains to be investigated. Pri-
marily, why does this algorithm produce more optimal results
than theCE algorithms? We believe the improved perfor-
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Fig. 6. Simulation results for the problem environments. Each data-point represents the population’s average fitness at the end of one simulation run.

mance is due to (1) allowing mutations to build upon one
another before they must show an improvement in fitness (in
other words, temporarily allowing neutral or even deleterious
mutations), (2) the intense selection pressure of the collapse
phase of the algorithm directing the evolution of the solution,
and (3) that advantageous adaptations ofσ, particularly those
adaptations that occur in the early stages of a population
expansion, will be more easily “detectable” and therefore
survive the selection process. These questions and hypotheses
remain the authors’ primary research focus.

Additionally, some simple modifications to the algorithm
are potentially interesting. First, implementing some selec-
tion during generations that previously were expand-only,
such as producing eleven children and killing off the least fit
child every generation. Second and perhaps more interesting,
implementing an in-family selection component, where some
of the collapse selection is performed within an ancestral line,
as opposed to the current implementation of selection across
the entire population.
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