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Abstract— We compare common, fixed population size evo- Il. ALGORITHM DESCRIPTION

lutionary strategies with a strategy incorporating a growing A. Commonalities between all algorithms
population size and intermittent selection events. In thedtter

strategy, the population size grows geometrically and setéon 1) Gene type, parameters, and operationatl of the
free every generation. After a fixed number of generations, a algorithms used in this paper use a real-valued gene situilar
selection event occurs which kills many of the individualsri the  hat described in D.B. Fogel's work on evolving a checkers

population and reduces the population size back to an initia . . )
value. The quality of solutions and speed of this algorithm ee player [4]. This gene consists of a real-valuelue, used

compared using four real-valued problem domains, to common @S one of the values of, the input vector to the fitness
evolutionary strategy algorithms based on(u, A) and (1 + ),  function; a real-value, specifying the standard deviation of
with promising results. a normally-distributed random variable used to mutatk:c;
and a real-valuer, used in the mutation of. The gene
. INTRODUCTION supports only the mutation operation. During mutatiers
Two common evolutionary({E) algorithms are compared mutated first, then this newis used to mutatealue. Lastly,
against an algorithm based on a different method of sefecti@ll individuals have a genome consisting ®@enes, where
— the selection eventSE). In the SE algorithm the popu- d represents the dimensionality of the optimization problem
lation size is not constant, but grows geometrically every 2) Initial value generation:The initial values ofvalue,
generation until the selection event occurs, at which tim@ andr are calculated as shown in (1).

the population size contracts. The biological inspiration Keoverage (Bupper — Brower ) 1/d

this algorithm is that of the epidemic — exemplified by the oo = ( ? i\p )

effect of pesticides on insect populations. The typicapero T = keop 0

destroying insect has a short life-span, and consequently value = ooN(0,1) € [Bowers Bupper] (1)

a population goes through many generations in a single
season. Additionally, such insects are reproductivelfifizp  Wherer overage is the coefficient of coverage, a scale factor
leading to a significantly expanded population over severahich for all simulations in this paper has a value of 10.0;
generations. k- IS a scale factor to get from the same calculation as

In many evolutionary strategies, the population size igo, in all simulations this value is 0.0%,wer and Bupper
constant throughout the simulation. Some algorithms, suéte the lower- and upper-bounds for the particular problem
as Restart CMA [1], will adjust the population size on gnvironmenty is the number of dimensions for the problem
run-by-run basis. In the “sustained population dynamicsgnvironment; andV(0,1) is an independent sampling of a
simulation [2] and other similar simulations, there is nctandard Gaussian distributed random variable.
control over the population size at all; instead, time and 3) Tournament selectionin these algorithms, tournament
space are simulated in a 2- or 3-dimensional environmerﬁ?'emion is used whenever some individuals need to be
and when individuals interact with each other they may figHthosen in a non-deterministic manner. Tournaments are used
or reproduce, etc. In [3], Schwefet al note that a Darwinian because of their simplicity in implementation and geneyali
natural selection process resulting in a “normal surplus o¥ith respect to problem environments [5, Ch.22 and Ch.24].
births over deaths ...is neither reflected in GAs nor in EPB. C'E,, algorithm description
With the selection event algorithm, we begin to apply this 1pig algorithm is based on the well-knowp, \) ES [5,

natural phenomenlon to computational optimizqtion. ) Ch.9]. The algorithm is modified to include the use of
~ In §ll we describe the different algorithms investigated, {,rnament selection operator. Parents are selected from
in this paper. Inglll we give a brief description of the the current generationP®), by being randomly chosen

different _environments used_to evalugte the perf(_)rman_ce ol participate in a pair-wise (or binary) tournament with
the algorithms. Ir§lV we provide and discuss the simulation g pjacement. The individual that is the more-fit of the two

results. becomes a parent, and both individuals are again eligible to
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TABLE |

C. CEg algorithm description
NEW PARAMETERS INTRODUCED BY THE SELECTION EVENT

This algorithm is the one used in D.B. Fogel's work evolv- ALGORITHM.
ing a checkers player [4], and is based on the-\) ES [5,
Ch.9]. In this strategyP(**1) consists of the best half of the Name | Type | Description
individuals in P!}, unmodified. Each of these individuals [P Integer | The initial population size.
also produces a child that is created through mutation of all Toe Integer | The periodicity of the selection eveni.
genes. TABLE Il
D. Selection Event&E) algorithm description EXAMPLE SHOWING HOW THE POPULATION SIZE CHANGES FOR THE'E
There are two phases in this evolutionary algorithm: the ALGORITHM
expand phase and the collapse phase. In the expand phase[ Generation 0 1 > 3 i 5
which occurs every generation, the population grows. Qurin |P| 30 9 270 816-30 90 270
the collapse phase, which occurs evéty! generations, a Phase E E E EBEC E E

“tournament-to-the-death” is used to reduce the popuiatio
size back to the initial valuq,P|(0). In the tournament-to-

the-death, the less-fit of two randomly chosen individuals
is deleted, and the more-fit individual is put back into the Several different real-valued problem environments were
population, and may again participate in another tournamerused to evaluate algorithm performance, where performance

Ill. PROBLEM ENVIRONMENTS

to-the-death. is meant in two different ways: as optimality of solutiongdan
The outline below is a step-by-step summary of thas the number of function evaluations performed during the
algorithm. search.
1) At time ¢, start with an initial population oqp|(t) All problem environments were taken from [6], though
individuals. with a different purpose than outlined in that referencegile
2) Expand Phase the environments are used to provide a cursory examination

a) Each individual inP® is mutated%, timeg, Of the performance of the nefE algorithm in four different
with the resulting offspring placed into the nextlandscapes. All functions have a single global optima, vhic

generation. Note that the parents are not placdfl€ algorithms are attempting to find. Since we are only
into the next generatidn interested in the relative performance of t§é’ and CE

b) Repeat the above stdf. times. When done re- algorithms, the value of this optima is of no concern. The
peating, you will haveP|*+7+) = £, T=|p|®, problems are briefly illustrated and described in Figure 1.

3) Collapse Phase

a) Perform pair-wise tournament-to-the-death to de- ) ) ) )
termine which individual is deleted from genera- For the selection event algorithm, simulations were run

tion ¢ + T,.. The more-fit of the two individuals with several different parameter settings to obtain a beoad
is returned to the population. view of its performance. A nomenclature was developed to

b) The above step is repeatddr, ™ — 1)|P|(t) distinguish these parameter sets on the graphs:
times, which returns the population size|f6|(t). [Tse]SE[|P|(O)] [Fa)

4) Steps 2-3 describe how the algorithm works for gener-
ationst throught + 7. These steps are repeated fowhere the values within the|'s denote the parameters that

IV. RESULTS

subsequent generations. were varied. For all of the parameter sets evaluated, the pop
As an example, consider the following parameters: asexudiation grew_from 30 individuals to around 810 individuals,
reproduction rater,, = 3.0, initial population sizqP|(O) _ though at different growth rates. In order to compare all

30, selection event periofl,, = 3. With these, the population three algorithms, the’E algorithms had a population size
size|P| changes as seen in Table II. As can be seen from i 810 individuals. .For each of the environments, 12 runs
example | P| temporarily expands to 810 in generation thregVere performed using random seeds for each run.

and then collapses back to 30 in the same generation. Thishigure 2 contains four graphs — one for each problem
paradigm also allows foff,. = 1, where |P| temporarily environment. Within a graph, each data-point represents

runs were ended after the same predetermined number of

. 1bTW(|) new parameters are used in this algorithm, and are descin  generations, which for all simulations was 6000 generation
able I. . . . .

2For the situations whereF,, is not a whole number, all individuals Elgure 2 IIIUStrat_eS both how anSIStently a partlcular(_)alg
produce the whole part ofF, children, and a pair-wise tournament ”thm CondUdeq Its Sear.Chv and is useful V\{h(—)l’] comparing the
selection with replacement strategy is used to produce ¢fainder of quality of solutions achieved by the algorithms. From these
the individuals. . plots, we see that th€ E algorithms outperform the?E

There is no reason this need be the case. Indeed, the authees h | ith ith h . i f soluti .
done some simulations where parents were placed into thtegeeeration. _agorlt ms W't_ respect to the optimality of solution crige
However, for the scope of this paper, the statement holds. in all four environments.
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Fig. 1. Lower-dimension plots of test problem environmen{s) illustrates a simple unimodal function of 100 dimensi 1(b) illustrates a multi-modal
function of 50 dimensions. 1(c) illustrates a multi-modahdtion of 50 dimensions. 1(d) illustrates a multi-modahdtion of 50 dimensions, made by
combining the Rastrigin, Weierstrass, Griewank, Ackleyl &phere functions.
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Fig. 2. Simulation results for the four problem environnserifach data-point represents the population’s averageséitat the end of one simulation run.

We also plot the population’s average fitness against thieom these figures is that in order to have an equal number
number of individuals evaluatédas seen in Figure 3 and of individuals evaluated by each algorithm, the number of
Figure 5. These plots show how the average fithess changgnerations had to be made unequal. Recall fgtirB that
as the simulation progresses. Of critical importance t® noC'E,, creates (and hence evaluates) 810 individuals every

generation, and frorfill-C that C'E creates 810 individuals
4The number of individuals evaluated is proportional to thenber of

. . ’ o . initially and 405 individuals each subsequent generation.
function evaluations performed, with the constant of prtpoality varying . .
by environment. This means that in order to evaluate the same number of
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Fig. 3. Simulation results for the Rotated Shifted Spherg &hifted Rastrigin problem environments. These plots sti@mvpopulation average fitness
against the number of individuals evaluated. The plotsunfelerror bars for the population’s average fitness valusyisly the best-average, the average-

average, and worst-average of the 12 simulation runs.

individuals, theC Eg algorithm has to run for twice as many
generations. Similarly for th8 E algorithms, the growth rate
F.. and selection event periodicif§;. determine how many
individuals are created and evaluated. From these plots we
see that (1) the”Eg algorithm has the fastest algorithmic
speed, though it also tends to prematurely converge, and tha
(2) the growth rate parameters 6t have a small effect

on the speed of solutién

Note that in theS E plots, the population’s average fitnessFig. 4.

5Though only the fastest and slowest growth rates simulatedskaown
in these figures, the intermediate growth rates do not shgwifiantly
different results.
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Close-up view of a simulation run showing how the fdor

“bounces” — see Figure 4 for a close-up view of the dat he SE algorithms change generation to generation. This view ishef
'S F230, 3 algorithm in the hybrid environment.



F12 — Schwefel 2.13 F15 — Hybrid
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Fig. 5. Simulation results for the Schwefel 2.13 and Hybridgtem environments. These plots show the population geefitness against the number of
individuals evaluated. The plots include error bars forbpulation’s average fitness value, showing the best-geei@erage-average, and worst-average
of the 12 simulation runs.

This is a result of the expand and collapse cycles: as tipeedetermined number of individuals (for these simulatjon
population expands, the average fitness slowly incréasesimost five million individuals). From these plots, we see
since most of the mutations have a negative effect on fitnessyth further evidence that th&€F algorithms provide more

at least initially and before subsequent mutations having @ptimal solutions than thé'E' algorithms on these problems,
positive effect on fithess can be realized; when the pofmrati and that the growth rate parameters do not greatly effect the
collapses, many of the less-fit individuals die, causing theptimality of solution found.

average fitness to decrease.

Figure 6 is a reproduction of the earlier Figure 2, showing
the simulation results for the simulations where an equal This paper has introduced a new algorithm, which simu-
number of individuals were evaluated. Within a graphlation results have shown performs well in a wide range of
each data-point represents one run from one of the elevproblem environments when compared to two well-known
algorithm variations. All runs were ended after the samalgorithms. However, much remains to be investigated. Pri-

marily, why does this algorithm produce more optimal result

SRecall that these are all minimization problems than theC'E algorithms? We believe the improved perfor-

V. CONCLUSION, DIScUsSION AND FUTURE WORK
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Fig. 6. Simulation results for the problem environmentsctEdata-point represents the population’s average fitretbeegend of one simulation run.

mance is due to (1) allowing mutations to build upon one
another before they must show an improvement in fithess (m
other words, temporarily allowing neutral or even deletesi
mutations), (2) the intense selection pressure of the gadla
phase of the algorithm directing the evolution of the solui
and (3) that advantageous adaptations,gfarticularly those
adaptations that occur in the early stages of a populatié#
expansion, will be more easily “detectable” and therefore
survive the selection process. These questions and hygasthe4]
remain the authors’ primary research focus.

Additionally, some simple modifications to the algorithmyg,
are potentially interesting. First, implementing somessel
tion during generations that previously were expand-onl
such as producing eleven children and killing off the least f
child every generation. Second and perhaps more integestin
implementing an in-family selection component, where some
of the collapse selection is performed within an ancestra] |
as opposed to the current implementation of selection acros
the entire population.

[2]
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